

 ​TCP/IP Regression Test Suite
Shivansh Rai

Introduction

Overview

Regression testing is one of the most critical elements of the test artifacts and proves to
be one of the most preventive measures for testing a software. Currently, within
FreeBSD, there is no such tool to perform regression testing of the TCP/IP network stack.
The purpose of this project is to develop tests using a regression testing tool which can
then be integrated with FreeBSD. Once integrated, the tool will also facilitate further
development of such tests. The regression testing tool of choice here is ​packetdrill​.

About​ ​packetdrill​1

packetdrill​ is an open-source scripting tool that enables testing the correctness and
performance of entire TCP/UDP/IP network stack implementations, from the system call
layer to the hardware network interface, for both IPv4 and IPv6.

About​ ​netperf​2

netperf​ is a software application that provides network bandwidth testing between two
hosts on a network. It supports Unix domain sockets, TCP, SCTP, DLPI and UDP via BSD
sockets.

Potential Mentor

Hiren Panchasara (hiren@freebsd.org)

 1 ​https://github.com/google/packetdrill
 2 ​http://www.netperf.org/netperf/

https://github.com/google/packetdrill
http://www.netperf.org/netperf/

The problem
Despite their importance in modern computer systems, network protocols often undergo
only ad-hoc testing before their deployment, and thus they are often tedious to
troubleshoot on failure. A regression testing tool is required to help in various
scenarios/phases such as :

➢ Black box testing for new feature development.
➢ Need for more precision in load tests than ​netperf​.
➢ Need for replaying traces to reproduce issues while troubleshooting.
➢ Testing other aspects such as correctness, performance and security of network

stacks.

Currently, there is no such regression testing tool for FreeBSD which facilitates
development of new regression tests.

Project Abstract

packetdrill​ currently supports testing multiple scenarios for TCP/IP protocol suite
within Linux.​ ​This project aims to design and implement a wire level regression test suite
for FreeBSD using ​packetdrill​.​ The test suite will exercise various states in the TCP/IP
protocol suite, with both IPv4 and IPv6 support. Besides Linux, the ​packetdrill​ tool
works on {Free, Net, Open} BSD.

The existing Linux test suite implemented within ​packetdrill​ will provide a basis for
understanding, and implementation of the FreeBSD test suite. For the current scope of
the project, only a subset of the existing test scenarios will be implemented.

Why Packetdrill?

While valuable for measuring overall performance, TCP regression testing with
netperf, ​application load tests, or production workloads can fail to reveal significant
functional bugs in congestion control, loss recovery, flow control, security, DoS hardening
and protocol state machines. Such approaches suffer from noise due to variations in
site/network conditions or content, and a lack of precision and isolation, thus bugs in
these areas can go unnoticed. Since ​netperf​ is supposed to be more for benchmarking
purposes and what we are trying to do is measure correctness, ​packetdrill​, which
was built with the same mindset, seemed an apt choice for this project.

Technical Details
The tests made using ​packetdrill​ will be initially based on scenarios taken from the
linux tests. One such scenario is testing the TCP stack when the injected packet has both
SYN and RST bits set. In this case, the TCP stack should not respond to the incoming RSTs,
or else we could get infinite RST ping-pong storms. The success of this test will depend on
whether we can still successfully establish a connection after a valid SYN is injected into
the stack.

With the initial contributions done previously, I aim at testing the FreeBSD TCP stack
behaviour by setting combinations of various TCP flags while injecting packets into the
system under test (SUT).

Test Plan
packetdrill​ supports two modes of testing - local and remote. A TUN virtual network
device is used in the local testing and a physical NIC is used for remote testing.
Local testing is relatively easier to use because there is less timing variation and the users
need not coordinate access to multiple machines.

To avoid conflicts arising due to memory locking used in ​packetdrill​, the following
command must be run on a FreeBSD machine -

>> sudo sysctl -w vm.old_mlock = 1

Or following line should be placed in ​/etc/sysctl.conf​ -

vm.old_mlock = 1

Local mode testing

Local mode is the default mode, and hence the user need not specify any special
command line flags.

>> ./packetdrill -v <test-script.pkt>

Executing the above command will give the information about the inbound injected and
outbound sniffed packets which can be studied and checked whether in accordance with
the expected behaviour. The TUN virtual network device will be used as a source and sink
for packets in this case.

Remote mode testing

On the system under test (i.e the “client” machine), a command line option to enable
remote mode (acting as a client) and a second option to specify the IP address of the
remote server machine to which the client packetdrill instance will connect must be
specified.

client>> ./packetdrill --wire_client --wire_server_ip=<server_ip>
<test-script.pkt>

On the remote machine, using the same layer 2 broadcast domain (same hub/switch), a
packetdrill process acting as a “wire server” daemon to inject and sniff packets remotely
on the wire will be started.

server>> ./packetdrill --wire_server

The client instance will connect to the server (using TCP), and will send command line
options and contents of the script file. Then, the two packetdrill instances will work in
coherence to execute the script and test the client machine’s network stack.

IPv4 and IPv6 protocol testing

packetdrill​ supports IPv4, IPv6 and dual-stack modes. The modes can be specified by
the user with ​--ip_version​ command line flag. To get FreeBSD to allow using
ipv4-mapped-ipv6 mode, the kernel must be notified with the following command -

>> sysctl -w net.inet6.ip6.v6only = 0

For testing using AF_INET6 sockets with IPv4 traffic -

>> ./packetdrill --ip_version=ipv4-mapped-ipv6 <test-script.pkt>

For testing using AF_INET6 sockets with IPv6 traffic -

>> ./packetdrill --ip_version=ipv6 --mtu=1520 <test-script.pkt>

Since the IPv6 headers are 20 bytes larger than the IPv4 headers, the MTU has to be set
to 1520 to address the extra 20 bytes, rather than the standard size of 1500 bytes.

Deliverables
➢ Development of TCP/IP based test suite for FreeBSD using ​packetdrill​.
➢ Attempt at covering all the scenarios implemented in ​packetdrill​ for Linux.
➢ If all the existing scenarios from Linux have been covered, attempt at working on

new scenarios.
➢ Attempt to create tests based on UDP and those related to sockets.
➢ packetdrill​ currently supports testing only a single connection at a time. An

attempt will be made to patch it to support multiple concurrent connections.
➢ The current remote mode available in ​packetdrill​ allows testing a remote host

provided there is already an instance of ​packetdrill​ running on it. There is not
yet support for testing a remote host that does not have ​packetdrill​ running.
One such approach for enabling support for this can be that instead of getting
command line arguments and the script over a TCP connection, the current
instance can get it directly. Hence, the logic for handshake with the client will be
removed, the packets will be injected and the client will wait for inbound packets.

List of scenarios to be covered

The following scenarios will be covered initially -

1. Three-way handshake ​(done)
2. Reset from closed state
3. Reset from non-synchronized state
4. Reset from synchronized state
5. TCP options establishment ​(5 tests contributed)
6. Sliding window protocol
7. Urgent pointer
8. Selective acknowledgements
9. TCP timestamps
10. Time-wait configuration
11. Connection close
12. Simultaneous close
13. Receive ACKs, RSTs, and URGs while window is zero
14. Receive window size advertisement
15. Transmit window size advertisement
16. Support partner shrinking window
17. Silly window syndrome avoidance
18. Zero window handling
19. Zero window probing

Project Schedule

Start End Task

23 May Start of coding

23 May 24 May Checking for compatibility of previously developed
tests for Linux with FreeBSD

24 May 19 June Manual development of tests based on TCP,
considering all the scenarios covered in Linux tests

20 June 27 June Mid-term Evaluations

28 June 14 July Attempt at developing new tests based on UDP and
socket based tests​ ​for FreeBSD

15 July 31 July Attempt at patching ​packetdrill​ by adding a
new mode of testing in which the remote host will
not need an instance of ​packetdrill​ running

1 Aug 11 Aug Attempt at patching ​packetdrill​ to support
multiple concurrent connections

12 Aug 14 Aug Code review

15 Aug End of coding (soft)

23 Aug End of coding (hard)

The Code
https://github.com/shivrai/packetdrill

Personal Information
Contact

 Name ​Shivansh Rai
 E-mail ​shivanshrai84@gmail.com
 Phone ​+91 7755047792
 IRC ​zeeb on Freenode

https://github.com/shivrai/packetdrill

