Google Summer of Code 2017 - The FreeBSD Project

Smoke testing of all base utilities
Automating generation of test scripts

Overview

| have been brainstorming since some time on how
to proceed to write an automation tool which is
supposed to produce smoke tests with a minimal

set of test-cases for all the utilities in the base system.

Hoping to get valuable suggestions before
proceeding on implementation.

Procedure

The previously written functional test for 1s (1) at
the time of project proposal submission (the
proposal was written in 4 days, hence might be
error-prone) was the first step to demonstrate a very
simple test which checks for basic options supported
by a utility and executes them, reporting success or
failure.

A successful execution of a command of the form -
>> utility -<short_option> --<long option>

will denote that the utility under test is properly
linked.

We define a set containing options which can be
easily tested. An example set can contain the
following options -

['--version', '--help',.., '-Vv',
Note 1: '-h"' also refers to human readable format
for some utilities, hence should be taken into
account.

Note 2: Some utilities like dd don't accept any
arguments, hence an approach for covering them has
to be figured out.

The set can be broken down into two separate sets
containing short-options and long-options to
effectively reduce the search time while performing
the next step, so that lookups for short and long
options can be done separately.

For each utility:

Pass an unsupported option (can be chosen
experimentally) which "might" produce a usage
message that can be parsed.

If the above step fails, then:

Parse the relevant man-page(s) for the supported
options.

On finding options which are defined in the set, we
include them in the utility's short options([]/
long options[] array.

Complexity analysis

A rough complexity analysis for the running time of
the tool (there may be a chance of improvement) -

n - total number of utilities
(~ 567 remaining without test coverage)
d - total number of (short & long) options in the set

m - "upper bound" on the number of options a utility
may support
[- maximum length of any supported long option

Total running time complexity = O(n * d * m * [)
L.-Y-.J

Itis currently assumed that string matching (for long
options) will be done in O(/) time (list-like behavior).
However, O(m * I) will be reduced to O(1) lookup time
when using for e.g. a set in python.

https://shivrai.github.io/assets/tmp/GSoC17ProjectProposal.pdf
https://docs.python.org/2/library/sets.html
https://goo.gl/qdCv3b
https://goo.gl/IZU6Wl

Reporting failures

The tool will report the commands which failed,
hence denoting that the utility under test is not
properly linked.

Note: A point to be noted here is that following the
above mentioned plan, the ability of our tool to figure
out the reasons of failure will be out of scope i.e.
regression testing of a utility will not be possible.

Reference

On Thu, Jun 8, 2017 at 11:46 PM Brooks Davis
<brooks@freebsd.org> wrote:

The intent of the project really was the former, hence
the focus on

some automation in the project idea. | think what
you've been doing is

also useful and doing a bit more of it will help
prepare you for the

automated part.

On Wed, Jun 07, 2017 at 07:47:42PM +0000, Shivansh
Rai wrote:

> Hello all,

>

> | have one query concerning the overall aim of the
project - is it supposed

> to provide a "minimal" test coverage to "all" the
base utilities or a

> rigorous test coverage covering most of the
supported options.

> |f we choose the former, the rate of increment of
the "smoke tests score"

> will be high, and relatively slower for the latter case
(the chances for us

> to cover all of them until final evaluations are
relatively less in this

> case since around 568 are left).

