Google Summer of Code 2017

The FreeBSD Project
Smoke testing of all base utilities

Introduction

Overview

Smoke testing is a set of light tests which are done for checking basic functionalities of a
software to ascertain if the crucial functions work correctly. It precedes the actual in-depth
testing process. Smoke testing proves to be very effective in cases when changes donein a
software are to be verified if testable for running the actual tests. For e.g. the entire testing
process may be rendered useless if the tests are being run on a faulty or bad build
environment. The purpose of this project is to develop such smoke-testing suite of all base
utilities which can then be integrated with FreeBSD. Once integrated, the tool will also
facilitate further development of tests.

About kyual

kyua is a testing framework for infrastructure software, originally designed to equip
BSD-based operating systems with a test suite.

Potential Mentor

Brooks Davis (brooks@freebsd.org)

Thttps://github.com/immv/kyua
2https://wiki.freebsd.org/TestSuite



https://wiki.freebsd.org/TestSuite
mailto:brooks@freebsd.org
https://github.com/jmmv/kyua/

The problem

FreeBSD currently has a set of tests? under src/tests which are run using the kyua
framework. These tests need to be first installed individually before they can be used for
testing. This proves to be problematic in cases when direct testing of some newly installed
or updated utility has to be performed. It makes testing changes to utilities and libraries
difficult as one would like to perform tests (e.g. to ensure a proper build environment)
before proceeding for installation.

Project Abstract

This project aims to develop a new test infrastructure and automation tool along with basic
smoke tests to verify if all the base utilities in FreeBSD are linked properly. The testing
framework will ease the process of writing test cases which will be run in a completely
automated and developer friendly manner without any prior installation.

Implementation Details

The following steps will be performed in order to understand the problem at hand and the
approaches which can be used -

> Note how testing has been traditionally done in FreeBSD.
> Study the kyua framework and the approaches currently being used for testing.

> Study the current problems faced as a developer or tester when writing new test
cases, and the problems faced as a release engineer or tester when executing
existing test cases.




Test Plan

The file functional test.c is a simple test file which checks whether the 1s program is
properly linked by running trivial commands. The options supported by 1s are stored in
short options[] and long options[] presentin functional test.h.

The smoke tests can be run using the following commands -

>> make
>> ./functional_test <utility> --<optionl> --<option2>

It should be noted that finally the tests will be automated with appropriately passed
options. The above commands will not have to be run for testing individual programs.

The test file uses getopt () and getopt long () for testing the validity of the passed
options. If a valid option is passed, the command <utility> --<option(i)> is executed.
In case the command fails to execute for a valid option, this will imply that the utility under
test is not properly linked.

Populating short options[] and long options[]

short options[] and long options[] need to be initially populated with a few
supported options for all the base utilities. This can be done by using either one or both of
the following available approaches -

> Parse man pages for each utility to get the supported options.
> Pass an unsupported option to the utility. This might generate a usage message
which can then be parsed. The unsupported option will be chosen experimentally.

An automation script will be written which will populate short options[] and
long options[] by following the above mentioned approaches and will generate
relevant test files.

The initial version of the generated test scripts will only test trivial functionalities.



https://github.com/shivrai/smoketestsuite/blob/master/baseutils/ls/tests/functional_test.c
https://github.com/shivrai/smoketestsuite/blob/master/baseutils/ls/tests/functional_test.h

Although the above mentioned test plan does not check the entire state of application
under test, it suffices for the initial purposes of smoke testing.

The test plan for the project will be kept updated at the following location :
https://github.com/shivrai/smoketestsuite#test-plan

Expected Results

The final goals which are expected to be completed by the end of the project are -

> An automation tool which can be used for running relevant subsets of the available
tests.

> Set of test cases which verify the basic functionality of all the base utilities.

> Generation of a final report from the collected results clearly depicting all the tests
which succeeded, failed, skipped or timed-out. The report will be generated in a

presentation-independent format which can then be later converted to a
user-friendly format.

At the end of the project, all the base utilities will contain relevant tests in their respective
directories located under src/bin. Fore.g. src/bin/ls/tests.

Optional (would-be-nice) components -

> Basic tests for verifying if the libraries are properly linked.



https://github.com/shivrai/smoketestsuite#test-plan

Deliverables

Deliverables for first evaluation

> Since the number of base utilities is large, manual scripting of tests for each of them
will be cumbersome. An automation script will be made which will collect
information of the relevant base utilities for producing trivial test scripts initially. The
approaches used for this purpose are mentioned in the test plan.

The initially generated scripts will run trivial tests such as tool --help and tool
--version to verify that the program under test is linked properly.

> Test the basic functionality of a subset of base utilities.

Deliverables for second evaluation
> Expand the set of tests to include more functional tests.

> Support for generation of a report depicting important details of the test execution
in a presentation-independent format.

> Utility for converting the generated test report into a user-friendly format.

Deliverables for third evaluation
> An automation tool for running relevant subsets of the available tests.
> Test the basic functionality of all the existing base utilities.

> An attempt will be made to add smoke tests for verifying whether libraries are
properly linked.




Project Schedule

Start End Task

5 May 30 May Community Bonding Period
Get familiar with the intricacies of smoke testing.
Communicate with other testers and release
engineers in the community and get their opinions
on the plan of action.

30 May Start of coding

30 May 12 June Start work on writing the automation script for
generating trivial smoke tests.

13 June 25 June Add smoke tests for a subset of base utilities.

26 June 30 June First Evaluations

1 July 12 July Start extending the functional tests for each of the
base utilities.

Start work on writing an automation tool for running
relevant subsets of the test scripts.

13 July 17 July Add support for generating a report which depicts
important details of the test execution in a
presentation-independent format.

18 July 23 July Add a utility for converting the generated test report
into a user-friendly format.

24 July 28 July Second Evaluations

29 July 9 Aug Make an attempt to add smoke tests for verifying
whether libraries are properly linked.

10 Aug 20 Aug Add smoke tests for all base utilities.

21 Aug 29 Aug Code review and final evaluations

Add final touches to the documentation.




The Code

The source code will be kept updated at : https://github.com/shivrai/smoketestsuite

Biography

I am a junior at the Indian Institute of Technology Kanpur, pursuing Bachelor of Science in
the department of Mathematics and Scientific Computing.

My interests are in the field of Computer Networks, Operating Systems, Computer Systems
Security, Web-Development, Game Theory, Algorithms and Formal Verification.

I am a Unix and Linux enthusiast, and have been using FreeBSD since a year and a half.

Past involvement with The FreeBSD Project

My previous contribution to the FreeBSD community -
TCP/IP Regression Testsuite (Google Summer of Code 2016)
Used : packetdrill, shell scripting, knowledge of Computer Networks

Github link : https://github.com/shivrai/TCP-IP-Regression-TestSuite
FreeBSD wiki: https://wiki.freebsd.org/SummerOfCode2016/TCP-IP-RegressionTestSuite

Contributions

As a part of preparation for this project after communication with mentor, | wrote a basic
smoke test for the 1s utility demonstrating the general workflow and test plan which will
be followed for further continuing on writing tests.



https://github.com/google/packetdrill
https://github.com/shivrai/TCP-IP-Regression-TestSuite
https://github.com/shivrai/smoketestsuite
https://wiki.freebsd.org/SummerOfCode2016/TCP-IP-RegressionTestSuite
https://github.com/shivrai/smoketestsuite/blob/master/baseutils/ls/tests/functional_test.c
https://github.com/shivrai/smoketestsuite/blob/master/baseutils/ls/tests/functional_test.c

Availability / Working Hours

My summer vacation will begin from May 4 and end on July 25. During the vacation | will be
online on IRC and will be available for work all time during the day when I'm awake. | will
continue to be available most of the time after semester begins on July 31.

Contact

Name Shivansh Rai

E-mail shivansh@freebsd.org

Phone +91 7755047792

IRC shivansh on efnet
zeeb on freenode
Blog https://shivrai.github.io/
Address (C-205

Hall of Residence 10
Indian Institute of Technology
Kanpur, Uttar Pradesh
India - 208016



mailto:shivansh@freebsd.org
https://shivrai.github.io/

